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1.  Feature Attributes 

1.1. List of Attribute Groups 

Table S1.  A total of 162 features are characterized into 17 categories. Two styles of feature 
encoding are used to result in very different sizes of the feature vectors. The second column lists 
the numbers of features when using “Detail” encoding for each category. In the "summary" 
encoding, this number would be 1. (Table 3 in the paper presents the coverage of each attribute 
group used in our feature set.) 
 

GROUP 
INDEX 

# OF 
FEATURES 

DATASET Attribute 
Property 

REFERENCE NOTE 

1 
20 

Gene Expression Real value:  
[-1, 1] 

[8] Co-Expressed Score 

2 21 GO Molecular 
Function 

{1, 0} [7, 15] Co-Function Score 

3 33 GO Biological 
Process 

{1, 0} [7, 15] Co-Process Score 

4 23 GO Component {1, 0} [7, 15] Co-Location Score 

5 1 Protein Expression Real Value – 
Non Negative 

[9] Co-Expressed Score 

6 1 Essentiality {2 , 1, 0} [14]  

7 1 HMS_PCI Mass { 1, 0} [5, 3] 

8 
1 

TAP Mass { 1, 0} [4, 3] 

Matrix model for co-
complex and co-pathway 

prediction. Spoke model for 
direct PPI prediction [3] 

9 1 Y2H { 1, 0} [1, 2, 3]  

10 1 Synthetic Lethal { 1, 0} [10, 13]  

11 
1 

Gene Neighborhood / 
Gene Fusion / Gene 

Co-occur 

{ 1, 0} [10]  

12 1 Sequence Similarity Real value - 
Non negative 

[15]  

13 
4 

Homology based PPI Discrete: Non-
negative (Most 

0, 1) 

[15, 16]  

14 1 Domain-Domain 
Interaction 

Real value 
between [0, 1] 

[11] Co-Domain Score 

15 
16 

Protein-DNA TF 
group binding 

Non-negative 
discrete, most 0 

[6]  
Co-Binding Score 

16 25 MIPS Protein Class { 1, 0} [17]  

17 11 MIPS Mutant 
Phenotype 

{ 1, 0} [17]  
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1.2. Details about Each Attribute 

1.2.1. Gene Expression Data  
The gene expression data were obtained from ref. [8] and contained 20 gene expression 
datasets recorded under more than 500 conditions (each measuring a time series 
expression profile) was downloaded from 
http://www.psrg.lcs.mit.edu/Networks/data/expressionData.txt). We can either compute 
one global similarity score (under "Summary" encoding) for each pair of proteins or 20 
distinct scores (under "Detailed" encoding) for each pair.  
• In summary encoding, we calculated, for each pair, the Pearson correlation value 

considering all conditions and used it as one attribute. 
• In detail encoding, we split the 500+ set into the following subsets:  20 subsets based 

on their experimental sources and conditions based on the criteria given in 
http://www.psrg.lcs.mit.edu/Networks/data/expressionData.txt. We then calculated 
the Pearson CC for each dataset and therefore obtained 20 features for this group. 

 

1.2.2. SGD’s Gene Ontology (Co-function, Co-process, and Co-localization)  
Gene Ontology (GO) based information was downloaded from SGD [7] and include:     

- molecular function of a gene product,  
- biological process in which the gene product participates,  
- cellular component where the gene product. 

• In summary encoding, for each pair in each of the three GO hierarchies trees, we use 
as feature the value of how many times both are in the same category. This results in 
three values as attributes. We treat the functional catalog as a hierarchical tree of 
functional classes. Each protein is either a member or not a member of each 
functional class, such that each protein describes a "subtree" of the overall 
hierarchical tree of classes. The "functional similarity" between two proteins is 
defined as the frequency at which the intersection tree of the two proteins occurs in 
the distribution. Intuitively, the intersection tree represents the function shared by the 
two proteins. Finally, a single real value is derived to represent this similarity for a 
protein pair.   

• In detail encoding, we generate each GO-feature as a discrete feature {0 or 1}: “1” 
means, both proteins share the same function /component /process. “0” means 
otherwise. There are 34 types of processes, 22 types of function, 24 and types of 
component features. Each class was mapped to one binary variable ("attribute").  

 

1.2.3. Protein expression data 
Ghaemmaghami, et al [13] presented experimental protein abundance data for yeast. 
Since this data set includes just one condition’s expression, we used the absolute 
difference as our protein co-expression attribute.  
• In summary encoding: Due to there is only one condition expression in this data, we 

use the absolute difference of the protein expression value.  
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• In detail encoding: Due to there is only one condition expression in this data, we also 
use the absolute difference of the protein expression value. So here the detailed 
encoding is the same as the summary encoding for this feature.  

 
 

1.2.4. Essentiality 
1106 ORFs are listed in the essential ORF list, downloaded from 
www.sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt. Based on 
the advice by the authors of this feature set, we assume that anything not listed can be 
considered to be nonessential (NE).  Any gene deemed essential (E) is one that cannot be 
made into a haploid or homozygous deletion strain. The co-essential feature is a 3-value 
categorized feature: 0 means NE/EN, 1 means NN, 2 means EE) 
• In summary encoding: This is a one value feature. 
• In detail encoding: This is a one value feature. Here the detailed encoding is the same 

as the summary encoding for this feature. 
 
 

1.2.5. High throughput direct PPI data set 
Two types of high throughput direct data were used, (1) derived from mass spectrometry 
and (2) from Y2H screens: 

- Mass spectrometry data: These experiments use individual proteins as ‘hooks’ to 
biochemically purify protein complexes. The identity of the proteins located in 
these complexes is then determined by mass spectrometry. TAP [4] (tandem 
affinity purification) and HMS-PCI [5] (high-throughout mass-spectrometry 
protein complex identification) are two of the protocols used for this technique. 
Both protocols may miss true complexes when the affinity is weak or transient or 
when the tagged protein may be misfolded or its interaction capability disturbed 
by the tag. We used TAP and HMS-PCI as separate attributes. To convert 
complex relationships to interaction pairs, we use the spoke model [3] for the 
direct protein-protein interaction prediction task, resulting in 3224 pairs for TAP 
(spoke) and 3618 pairs for HMS-PCI. For the other two tasks, we employed the 
matrix model to use these two mass spectrometry features.   

- Y2H ( yeast two-hybrids screen ) data: In the Yeast two-hybrid system, potential 
pairs of proteins are expressed as two separate fusion (hybrids) proteins in yeast 
that are brought together by the DNA-mediated interaction of the fusion proteins. 
Therefore, this method requires that the two test proteins are capable of 
interacting in the environment of the nucleus. Thus, some proteins which are 
natively localized in other compartments of the cell may fail to interact. 5614 
Y2H interactions were downloaded from [3].  

• In summary encoding: For each highthroughput experiment, the values are 
determined by the experiments. We do not have calculation processing here.  

• In detail encoding: The values are determined by the experiments. Here the detailed 
encoding is the same as the summary encoding for this feature. 
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1.2.6. Synthetic Lethal 
The synthetic lethal data described as {0, 1} discrete feature pairs were derived from the 
union of the following data sets:  

- 295 synthetic lethal interaction from the first high-throughput study on genetic 
interactions in yeast [13a]   

- 591 synthetic lethal interactions parsed from MIPS were downloaded from 
http://mips.gsf.de/proj/yeast/tabels/interaction/genetic_interact.html. 

- A genetic interaction network containing approximately 1000 genes and 
approximately 4000 interactions [13]:  

• In summary encoding: The values are determined by the experiments. We do not have 
calculation processing here. 

• In detail encoding: The values are determined by the experiments. Here the detailed 
encoding is the same as the summary encoding for this feature. 
 

1.2.7. Sequence Derived Features  
This attribute is the union of the following three data sets described by Mering, et al 
[10]:   

- Conserved gene neighborhood: 42 sequenced genomes were searched for 
instances of conserved neighborhood between genes.  

- Co-occurrence of genes: Each entry in the orthology-database COG9, derived 
from 42 completely sequenced genomes. We used the Mering et al.-derived 
feature of potential pairs of genes with mutual information higher than 0.5 (close 
matches to the 13 most frequent patterns were ignored, as they are mostly 
phylogenetic) [10].  

- Gene fusion events: These were detected by the presence of a gene in more than 
one COG cluster. Single fusion events were not considered significant.  

• In summary encoding: We download the data from [10]. Due to each method’s low 
coverage, we use the union of them as the feature.  

• In detail encoding: Here the detailed encoding is the same as the summary encoding 
for this feature. 

 

1.2.8. Sequence Similarity 
This feature was obtained from the SGD NCBI-BLASTP: ftp://genome-
ftp.stanford.edu/pub/yeast/data_download/sequence_similarity/ [15]. We only used the 
yeast to yeast alignment result from this database. All BLASTP hits obtained with the 
default parameters that had E-value less than or equal to 0.01 were used and the query 
protein was excluded from the results. 
• In summary encoding : This is a one value feature. 
• In detail encoding: This is a one value feature. Here the detailed encoding is the same 

as the summary encoding for this feature. 
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1.2.9. Homology Based PPI 
As for the feature “sequence similarity”, we also used the SGD NCBI PSI-BLAST hits 
results [15] to derive the homology feature. We use the 0.001 as a cutoff on the E-value 
to decide the homology pairs. In this case, every ORF in S. cerevisiae was queried using 
PSI-BLAST against NCBI's non-redundant (nr) protein database subset of four species:  

- Caenorhabditis elegans (WormBase)    19844 hits 
- Drosophila melanogaster (FlyBase)  26268 hits 
- Homo sapiens (ENSEMBL (HUMAN)    101066 hits  
- Saccharomyces cerevisiae (SGD)   30489 hits 

The final features were obtained by determining if a candidate Yeast protein-protein pair 
interacts in other species or not. If yes, the feature was the number of times their 
homology proteins found to interact, otherwise “0”.   

• In detail encoding: To each species above, we first search for the homology protein 
within that specie for a specific Yeast protein. Then for a candidate Yeast protein pair, 
if we could find the homology proteins for both proteins in another species. We check 
to see if these two homology proteins interact or not (For worm, fly and human, we 
use DIP [6] to check. For Yeast, we use Y2H to check).   

• In summary encoding: We use the union of the above four features in the summary 
encoding style.  

 

1.2.10. Domain-domain interaction feature 
Deng et al [11] used maximum likelihood estimation methods to infer interacting 
domains based on sequence analysis. They use yeast two-hybrid protein interaction data 
and treat protein sequences as “bag of domains”.  The data were downloaded from 
http://www.cmb.usc.edu/msms/ProteinInteraction/ using the file 
ProteinAction_025_80SGDY2H.txt ( trained based on the Y2H PPI ). We used the 
protein interacting probability derived from the above derived domain-domain interaction 
probability as features. 
• In summary encoding: This is a one value feature.  
• In detail encoding: This is a one value feature. Here the detailed encoding is the same 

as the summary encoding for this feature. 
 

1.2.11. MIT Gene Regulator Binding Data  
Transcription Factor (TF) binding data were downloaded from 
http://jura.wi.mit.edu/young_public/regulatory_code/GWLD.html [6] 
• In summary encoding, we used a p-value cutoff to define binding. For each pair of 

proteins, we have counted the number of transcription factors that bind to both genes, 
and have used this number as the attribute. 
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• In detail encoding, we group the TFs based on the MIPS protein class catalog into 16 
TF groups. For each TF group, we counted the number TFs that bind to both genes, 
and used this number as one of our attributes. This resulted in 16 features in this 
group.  

 

1.2.12. MIPS Derived Features 
We employed the two functional properties in MIPS, (1) protein class catalog and (2) 
protein knock out mutant phenotype catalogs: 

- MIPS protein class catalog: Yeast proteins are assigned to different protein 
classes according to the MIPS Protein Class Catalogue. For each protein class, we 
recorded pairs of proteins that both fall into that class. The data were downloaded 
from ftp://ftpmips.gsf.de/yeast/catalogues/protein_classes/ 

- MIPS knock out phenotype: Mutant phenotypes for yeast genes were obtained 
from the MIPS Mutant Phenotype Catalogue. For each mutant phenotype, we 
recorded pairs of proteins whose encoding genes both have that mutant phenotype. 
The data were downloaded from ftp://ftpmips.gsf.de/yeast/catalogues/phenotype/ 

• In summary encoding, features correspond to how many times a pair in each of the 
two MIPS property trees belong to the same category. This results in 2 values from 
two catalogs.  

• In detail encoding, we define each MIPS second level property class as a {0 or 1} 
discrete feature. “1” means the two proteins belong to the same class or mutant 
phenotype. “0” means otherwise. There are 25 protein classes and 11 first level 
mutant knock out phenotype classes. 
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2.  Precision vs. Recall Curves of Six Different Classifiers 
 
We used two measures to evaluate the performance of a classifier:  (a). Precision vs. Recall 
Curves and (b). R50 Partial Area under Receiver Operator Characteristic Curves.  

- In Precision vs. Recall curves, precision refers to the fraction of interacting pairs 
predicted by the classifier that are truly interacting (“true positives”). Recall measures 
how many of the known pairs of interacting proteins have been identified by the learning 
model. The precision vs. recall curve is then plotted for different cutoffs on the predicted 
score. 

- Receiver Operator Characteristic (ROC) curves plot the true positive rate against the false 
positive rate for the different possible cut-off values of the predicted score. The area 
under the ROC curve (AUC) is commonly used as a summary measure of diagnostic 
accuracy. It can take values from 0.0 to 1.0. In our prediction task, we are predominantly 
concerned with the detection performance of our models under conditions where the false 
positive rate is low. Here, we use 50 as a cut-off, i.e. R50 is a partial AUC score that 
measures the area under the ROC curve until reaching 50 negative predictions. Here we 
also show the R25, R100 and R150 values. 

 
Considering the highly skewed distribution of interacting and non-interacting pairs, we employed 
a cost-sensitive strategy. This strategy assumes that the classifiers pay higher costs if a positive 
example is misclassified into the negative class. Based on this assumption the classifier then 
moves the prediction boundary to minimize the training costs. Then, we have a cost-sensitive 
parameter to choose during the modeling training. Like other parameters, this parameter is also 
chosen by various train-test experiments to find the best value to use.  
 
Below is the supporting material for Figure 3 of the paper. Provided are the precision vs. recall 
curves of the physical interaction task and the co-pathway tasks by the six classifiers and two 
feature encoding types.   
 

2.1 Physical interaction task (DIP) 
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2.1.1. Summary Encoding 

 
 

2.1.2. Detailed Encoding 
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2.2 Co-pathway membership task (KEGG) 
2.2.1. Summary Encoding 

 
 

2.2.2. Detailed Encoding 
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3. Classifier Performance Depending on Training Data Size  
 

3.1 Logistic regression Precision vs. Recall curves when changing 
training size  

Below is the supporting material for Figure 4 of the paper. Provided are the precision vs. 
recall curves using Logistic Regression (LR) applied to the physical interaction task and the 
co-pathway tasks when changing the size of the training set. Supporting the conclusion from 
Figure 3 of the paper, these curves show that the LR performance is worse than the RF 
performance, even when increasing the train size drastically.   
 
Precision vs. Recall curves were obtained by varying the training set size to include (a) ~50 
interaction pairs. (b) ~200 interaction pairs. (c) ~500 interaction pairs. (d) ~1000 interaction 
pairs. Features were encoded as "Detailed". 
 

3.1.1 Physical interaction task (DIP) 

 
 

3.1.2 Co-pathway membership task (KEGG) 
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3.2 Six classifiers Precision vs. Recall curves when changing training 
size  
Furthermore, we also make the comparison between all six classifiers when the training set 
contains around 120,000 examples. The precision vs. recall curves of all six classifiers upon 
increasing the size of the training set to ~120,000 with ~200 interacting pairs are shown next. 
Features were encoded as "Detailed". From the Precision-Recall curves, it can be seen that even 
when we use a larger training set, the RF classifier is still ranked among the top two best 
methods in all tasks.   
 

3.2.1 Co-complex prediction task (MIPS) 
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3.2.2 Physical interaction task (DIP) 
 

 
 

3.2.3 Co-pathway membership task (KEGG) 
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4. Performance Considering Feature Composition 
 
Shown below is the performance comparison when using the top 6 ranked feature categories for 
each prediction task. The features were added one after the other according to the order given in 
Table 4 of the paper. The RF classifier with "Detailed" feature encoding was used for this 
experiment. Each curve represents the score using all features up to that rank (1 to 6). The 
seventh curve presents the Precision-Recall curve when using the full set of features.  
 

4.1. Co-Complex Task (MIPS) 
 

 
 
 

4.2. Direct Protein-Protein Interaction (DIP) 
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4.3. Co-pathway Task (KEGG) 
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